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Abstract—The recent interweaving of AI-6G technologies has
sparked extensive research interest in further enhancing reliable
and timely communications. Age of Information (AoI), as a novel
and integrated metric implying the intricate trade-offs among re-
liability, latency, and update frequency, has been well-researched
since its conception. This paper contributes new results in
this area by employing a Deep Reinforcement Learning (DRL)
approach to intelligently decide how to allocate power resources
and when to retransmit in a freshness-sensitive downlink multi-
user Hybrid Automatic Repeat reQuest with Chase Combining
(HARQ-CC) aided Non-Orthogonal Multiple Access (NOMA)
network. Specifically, an AoI minimization problem is formulated
as a Markov Decision Process (MDP) problem. Then, to achieve
deterministic, age-optimal, and intelligent power allocations and
retransmission decisions, the Double-Dueling-Deep Q Network
(DQN) is adopted. Furthermore, a more flexible retransmission
scheme, referred to as Retransmit-At-Will scheme, is proposed
to further facilitate the timeliness of the HARQ-aided NOMA
network. Simulation results verify the superiority of the proposed
intelligent scheme and demonstrate the threshold structure of the
retransmission policy. Also, answers to whether user pairing is
necessary are discussed by extensive simulation results.

Index Terms—Age of information, HARQ, NOMA, reinforce-
ment learning, power allocation.

I. INTRODUCTION

With the rapid development of the 5th Generation Mobile
Communication (5G), more and more Internet of Things
(IoT) devices are accessed to the networks [1]. In the IoT
application scenarios, such as automatic driving, smart factory,
and smart healthcare, etc., the timeliness of information plays
a significant role in enabling timely, accurate, and effective
decision-making. In this regard, it is imperative to deliver fresh
status updates in a timely and reliable manner, since the stale
one usually contains little value.

To measure the timeliness of information, Age of Infor-
mation (AoI) is first proposed in [2] for automated driving
applications. AoI is defined as the time elapsed since the
generation of the latest status which is received successfully.
Different from the traditional metric in the 5G ultra-reliable-
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low-latency (URLLC), such as latency and throughput, AoI
contemplates an intricate trade-off among reliability, latency,
and update frequency. As such, AoI is also known as a type
of semantic metrics, and has attracted massive interest from
government agencies, industry, and academia.

With the massive access of IoT devices, the research of
high timeliness access technique becomes a hot topic. Non-
orthogonal multiple access (NOMA) is considered as a promis-
ing access technique for the future network due to its high
spectral efficiency [3]. In [4] and [5], the authors have shed
light on the potential superior AoI performance in the high
signal-to-noise ratio (SNR) regime. However, in the low SNR
regime, the age performance of NOMA system inexorably
faces a bottleneck.

To this end, HARQ is introduced in [6] to ensure reliability
in the low SNR regime by achieving retransmission-driven
time diversity. Up to this point, the HARQ-aided NOMA
network has demonstrated its superiority in both throughput
and latency [7] and [8], while the age performance of HARQ-
aided NOMA network is seldom investigated. An exception
is our previous work in [9], which analyzes the average
blocklength error ratio (BLER) of users in the HARQ-aided
NOMA network, and provides an optimal transmission policy
by formulating an MDP problem. However, the theory and
analysis in [9] limited the number of users and the maximum
transmission round to 2 only, which hinders flexible and timely
system design.

In the multi-user NOMA network, user paring is a
commonly-implemented technique to simplify the transmis-
sion mode. [10] has demonstrated that in terms of throughput
performance, the optimal pairing policy manifests a strongest-
weakest symmetrical structure, i.e., the user with the best
channel condition is paired with the user with the worst
channel condition sequentially, so as to accomplish the pairing
of all users. Nevertheless, the insight on whether user pairing
will benefit the timeliness performance of the NOMA-based
network remains an open issue.

Besides, DRL algorithms are widely used in wireless com-
munication to solve high-complexity problems. Reinforcement
on Federated (RoF) scheme, based on deep multi-agent rein-
forcement learning is proposed in [11]. In [12], authors adopt
TD3 algorithm to allocate the available resources for IoT.

Motivated by the above, we aim to investigate the optimal
policy to minimize the average AoI in an HARQ-aided NOMA
network with multiple users and unrestricted transmission
rounds. Specifically, this paper achieves three-fold contribu-
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Fig. 1. HARQ-aided NOMA Network Model.

tions:
• We optimize the average AoI of an HARQ-aided NOMA

network with multiple users and unrestricted transmission
rounds. A Retransmit-At-Will policy that allows BS to re-
transmit flexibly is proposed, which manifests superiority
in terms of AoI compared to existing works.

• We reformulate the age-optimal problem as an MDP. A
Double-Dueling-DQN is trained to intelligently allocate
power resources and retransmit at will. The solutions
reveal the threshold structure of the retransmission policy.

• We investigate the user pairing issue in terms of AoI
under the HARQ-aided NOMA network. The simulation
results illustrate that user pairing can only enhance the
AoI at low SNR.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

A. Transmission Modle of HAQR-aided NOMA Network
We consider a NOMA downlink network with a BS and

N users (ui, i ∈ {1, · · · , N}) as Fig. 1, the distances from
users to the BS are ordered as d1 < d2 < d3 < · · · < dN .
The BS sends freshness critical control commands or status
updates to the users on the same shared channel. In a NOMA
downlink network, the BS sends out multiple user signals by
superposition coding (SC) technique in the power domain,
and HARQ-CC is applied as a key technique to enhance
transmission reliability by multiple retransmissions. Then,
the signal sent by the BS in the k−th transmission can be
expressed as

sk =

N∑
i=1

√
αi,kPxi,k , (1)

where P denotes the total power of a single transmission,
αi,k and xi,k denotes the power allocation coefficient and the
unit energy signal of user i in the k−th transmission. Since
the receiver end of the NOMA network needs to decode su-
perposed signals through successive interference cancellation
(SIC), that is, a strong user with high channel quality needs
to decode and eliminate weak users’ signals iteratively, and
then decodes its own signal. Generally, in order to improve
the reliability of SIC, the power allocation coefficients satisfy
α1,k < α2,k < · · · < αN,k,

∑N
i=1 αi,k = 1, which indicates

that weaker users are allocated with higher power.

We consider a wireless fading channel where the signal will
experience quasi-static Rayleigh fading. The perfect channel
state information (CSI) is assumed to be shared with the BS.
Then the channel coefficient in the k−th transmission from
user ui to BS can be expressed as

hi,k =

√
di

−τg , (2)

where g ∼ CN (0, 1) denotes the unit Rayleigh channel
coefficient and τ denotes the path loss exponent. In such a
case, the signal received by ui in the k−th transmission is
given by:

yi,k = hi,k

N∑
i=1

√
αi,kPxi,k + ni,k , (3)

where ni,k denotes the unit complex additive white Gaussian
noise (AWGN) with zero mean and variance σ2 = 1.

B. AoI Evolution of HARQ-aided NOMA Network
Noticing that as the number of NOMA users increases,

SIC decoding becomes more complex, which makes it harder
for users to decode successfully. To this end, we combine
NOMA with HARQ-CC to ensure reliable reception of updates
through retransmitting the former package. In HARQ-CC
protocol, if ui decodes its message successfully, a positive
acknowledgment (ACK) will be sent to the BS, otherwise, a
negative acknowledgment (NACK) will be sent. Different from
[9], where i) the BS can choose whether retransmit or not only
when it receives an NACK; ii) the BS can only transmit a new
package if it receives an ACK. We propose a Retransmit-At-
Will policy, which further relaxes these constraints, that is the
BS can choose whether retransmit or not no matter what it
receives.

We consider a time-slotted system where the continuous
time is discretized into time slots1. The BS serves all the
users through the generate-at-will model, which means the
BS can generate packages for all the users at the beginning
of every time slot. We adopt AoI as a metric to measure the
timeliness of the information received by users. Let ∆i (t)
denote the instantaneous AoI of ui at the time slot t, then if
ui receives a status update successfully, ∆i (t) will decrease
to the instantaneous AoI of this package, while ∆i (t) will
increase by 1 if ui fails to decode its message. We denote
ti, t

′

i ∈ {1, 2, · · · , Tmax} as the transmission round of ui’s
package at the time slot t, t + 1 respectively, which can
also represent the instantaneous AoI of ui’s package, and
Tmax represents the maximum transmission rounds. Then the
AoI evolution of ui between two adjacent time slots can be
expressed as

∆i (t+ 1) =

{
∆i (t) + 1, w.p. εi

t
′

i, w.p. 1− εi
, (4)

where εi denotes the BLER of ui.
Noticing that if the BS retransmits the ui’s package, the

transmission round ti will increase by 1, and if the BS

1This is an extensively-implemented operation, which is also conducted in
[13], [14]
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Fig. 2. A two-user example of instantaneous AoI evolution.

transmits a new package for ui, ti will be set as 1. Therefore,
we can obtain:

t
′

i =

{
ti + 1, χi = 1

1, χi = 0
, (5)

where χi = 1 represents retransmitting the former ui’s
package, and χi = 0 represents transmitting a new package
for ui.

Fig. 2 gives the AoI evolution of the HARQ-aided NOMA
network with two users as an example.

C. BLER analysis
In the k−th transmission, only the weakest user uN can

decode its message xN,k from yN,k directly. Other users
ui(i ̸= N) must use SIC technique to decode their message,
which means ui should decode and eliminate xj,k(i ⩽ j ⩽ N)
from yi,k first, and then decode its own message xi,k. In this
case, the signal-to-interference plus noise ratio (SINR) at ui
for decoding xj in the k−th transmission can be given as:

γ
(k)
ij =

αj,k |hi,k|2∑j−1
n=1 αn,k |hi,k|2 + 1/ρ

(i ⩽ j ⩽ N) , (6)

where ρ = P/σ2 denotes the SNR.
In the HARQ-aided NOMA network, users can store the

transmitted packages. When these packages are retransmitted,
the stored information can be used to achieve maximal ratio
combining (MRC) decoding to improve transmission reliabil-
ity. By this means, the SINR of ui for decoding the message
of uj in the tj-th transmission round can be given as:

γij (tj) =

tj∑
k=1

γ
(k)
ij , (7)

where tj ∈ {1, 2, · · · , Tmax}.
In [15], the BLER of ui for decoding uj’s message which

has been transmitted for tj times can be approximated as:

εij (tj) ≈ Q

(
C (γij (tj))− N

m√
V (γij (tj)) /m

)
, (8)

where N denotes the length of message sent to uj , m denotes
the number of encoded symbols, C (γij (tj)) = log2 (1 + ρ) is
the channel capacity, and V (γij (tj)) is the channel dispersion,
given as V (γij (tj)) = (1− 1/(1 + γij (tj))

2)(log2 e)
2.

Denote a vector
∼
αk ≜ (α1,k, α2,k, · · · , αN,k) as the allo-

cated power coefficients for N users at the k−th transmission.
According to equation (6)(7)(8), when given a fixed N and m,
εij (tj) is equivalent to a function of tj vectors. In this case,
εij(tj) can be expressed as:

εij (tj) ≈ ψij

( ∼
α1,

∼
α2, · · · ,

∼
αtj

)
, (9)

According to the principle of SIC, only when the user
successfully decodes and eliminates other interference signals,
and then successfully decodes its own signal, it is a successful
decoding process. In this case, the BLER of ui can be given
as:

εi = 1−
N∏
j=i

(1− εij (tj)) , (10)

which means the BLER of ui is associated with the transmis-
sion round of uj’s signal tj(i ⩽ j ⩽ N) and the corresponding
power allocation coefficient vector

∼
αk.

D. Problem Formulation
In the HARQ-aided NOMA network, retransmissions can

enhance the reliability but cause information aging. Besides,
how to allocate power resources has a significant impact on
the system timeliness. Therefore, it’s necessary for the BS
to adjust transmission policy π according to the state of the
network to enhance the timeliness.

We use the expected weighted sum AoI of all the users
to measure the AoI performance of the HARQ-aided NOMA
network. To minimize the expected weighted sum AoI, the
problem can be formulated as follows:

argmin
π

∆̄ = lim
Tslot→∞

1

Tslot

Tslot∑
t=1

N∑
i=1

E [ωi∆
π
i (t)] , (11)

where ωi denotes the weight of ui. The transmission policy
π contains two aspects: i) the power allocation scheme

∼
α at

every time slot; ii) when and whether to retransmit the former
package.

III. MDP FORMULATION
To obtain the age-optimal transmission policy for the

HARQ-aided NOMA network, we reformulate the problem
(11) as an MDP problem, which is characterized by a qua-
ternary tuple {S,A,P, r}, where S,A,P, r denotes the state
space, action space, state-action transition probability matrix,
and the reward respectively. The elements of the MDP for
HARQ-aided NOMA network are described specifically as
follows:
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• State Space: We denote st as the state of the network
at the time slot t, which is characterized by a tuple st ≜( ∼
α1,

∼
α2, · · · ,

∼
αTmax−1,T ,∆

)
, where

1) The coefficient vector
∼
αi ≜ (α1,i, α2,i, · · · , αN,i)

denotes the i−th power allocation coefficient for
all the N users which is stored in the buffer. We
discretize the power into M levels, and the power
coefficient can only take value from a discrete
set, that is αi,k ∈ { 1

M , 2
M , ..., M−1

M }. Due to the
computational complexity, the case αi,k = 1 which
means BS serves only one user is not taken into
consideration.

2) The vector T ≜ (t1, t2, · · · , tN ), where tj denotes
the transmission round of uj’s signal at the time slot
t, with tj ∈ {1, 2, · · · , Tmax}.

3) The AoI vector ∆ ≜ (∆1, ∆2, · · · , ∆N ), where ∆i

denotes the instantaneous AoI of ui at the time slot
t.

• Action Space: The action at ∈ A contains two as-
pects: i): the power allocation policy: denote

∼
α ≜

(α1, α2, · · · , αN ) as the power coefficient allocated by
the BS to all the N users at the time slot t, where
αi ∈ { 1

M , 2
M , ..., M−1

M }; ii): the retransmission policy χi.
Noticing that when ti = Tmax, the BS will only transmit
a new package for ui, that is χi = 0.

• Reward: We denote the instantaneous expected weighted
sum AoI as the reward rt at the time slot t, which can
be expressed as rt =

∑N
i=1 ωi∆i.

• Transition Probability: We denote P (st+1 | st, at) as
the transition probability from state st to state st+1 when
taking the action at. The transition probability can be
expressed as the following three parts:

1) Power allocation coefficient:{ ∼
αi

′
=

∼
αi+1 , 1 ≤ i ≤ Tmax − 2

∼
αTmax−1

′
=

∼
α

, (12)

where
∼
αi

′
denotes the i−th power coefficient vector

which is stored in the buffer at the time slot t+1. At
each iteration, we store the BS’s power allocation
scheme

∼
α in the buffer as

∼
αTmax−1, and then

update
∼
αi into

∼
αi+1. In this way, the buffer can

always maintain Tmax−1 freshest power coefficient
vectors for MRC decoding.

2) AoI evolution: the transition of AoI is given as (4).
To get εi at the time slot t+1, we should first obtain
εij(t

′

j), according to (10). Noticing that the MRC
decoding for a t

′

j times transmitted signal will use
the power coefficient scheme

∼
α and the freshest t

′

j−
1 power coefficient vectors in the buffer. Combined
with (9), we can get:

εij

(
t
′
j

)
=


ψij

(∼
α
)
, t

′
j = 1

ψij

( ∼
αTmax−1,

∼
α
)
, t

′
j = 2

· · · · · ·
ψij

( ∼
α1, · · · ,

∼
αTmax−1,

∼
α
)
, t

′
j = Tmax

.

(13)

3) Transmission round: the transition of transmission
round is given as (5).

IV. PROPOSED DOUBLE-DUELING-DQN
ALGORITHM

In this section, we first describe the idea of DQN, and
then utilize the Double-Dueling-DQN algorithm to solve the
formulated MDP.

A. Preliminaries of DQN
The main idea of reinforcement learning (RL) is to find

the optimal decision policy by maximizing the long-term
discounted return. We introduce the action-value function (Q-
function) to measure the value under policy π by taking action
at in a given state st, which can be expressed as:

Qπ (st, at) = Eπ

[ ∞∑
k=0

γk · rt+k|π

]
, (14)

where γ ∈ [0, 1] represents the discounted factor. Then, the
value function which measures the value starting from the state
st under policy π can be expressed as:

V π (st) = E
at

[Qπ (st, at)] . (15)

Noticing that the Q-function evaluates the value of all actions,
if we obtain Q∗ which is the Q-function under the optimal
policy π∗, the optimal action can be selected based on the
Q-value, therefore, π∗ can be obtained by:

π∗ = argmax
at∈A

Q∗(st, at) . (16)

As a commonly used RL algorithm, Q-learning is precisely
designed to obtain Q∗. Q-learning updates Qπ iteratively in
the following way until it converges to Q∗.

Qπ(st, at) = Qπ(st, at) + λ(yt −Qπ(st, at)) , (17)

where yt = rt + γmax
at+1

Qπ(st+1, at+1) is the temporal differ-

ence target (TD target), and λ denotes the learning rate.
However, Q-learning is difficult to converge when solv-

ing high-complexity problems. To this end, DQN algorithm
combines neural networks with Q-learning to solve the high
computational complexity problem. DQN is updated in a
similar way to Q-learning, except that a neural network
Qπ(st, at; θ) is used to approximate the Q-function, and the
network parameter θ is updated by stochastic gradient descent
method for each update.

B. Double-Dueling-DQN Algorithm
We adopt the Double-Dueling-DQN algorithm which is an

improved version of DQN to deal with the problem (11).
In an interaction, the agent observes the current transmission

state st of the HARQ-aided NOMA network and selects
an action at by ϵ-Greedy Policy. After the NOMA network
takes action at, the users’ AoI and the transmission state will
change. Then, the NOMA network returns a reward rt and the
next state st+1, which are in terms of at. The ϵ-Greedy Policy
is given as:

at =

random action, w.p. ϵ

argmax
a

Qπ(st, a; θ), w.p. 1− ϵ
, (18)
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where ϵ denotes the exploration probability. This policy makes
the agent inclined to explore more actions in the early stage of
the algorithm, which can avoid the algorithm from converging
to a local optimum. With continuous iterations, we gradually
set ϵ→ 1 to obtain a stable optimal solution.

After each round of interaction, we put (st, at, rt, st+1) into
the experience replay buffer D. If the size of experiences in
D exceeds a certain amount σ, a mini-batch experiences B =
{(st, at, rt, st+1)} will be sampled from D for updating the
network parameter during the training stage. This technique is
called experience replay, which can improve the utilization of
training data and reduce the correlation of adjacent samples.

In the training stage, to solve the overestimation problem
of traditional DQN, two networks are used for training in our
algorithm. The main network parameter is θ, which is used to
approximate the Q-function, and the target network parameter
is θ−, which is used to calculate the TD target to update the
main network. The TD target can be expressed as:

ytargett = rt + γmax
at+1

Qπ(st+1, at+1; θ
−) . (19)

The main network updates the parameters θ by minimizing
the loss function as follows at each interaction:

L(θ) =
1

|B|
∑

(st,at,rt,st+1)∈B

[
ytargett −Q (st, at; θ)

]2
. (20)

The target network parameter θ− is synchronized to the main
network parameter θ every l updates.

Besides, we use dueling network architecture to improve
the algorithm performance, which adopts two networks to ap-
proximate the Q-function. We approximate the value function
V π(st) and the advantage function Aπ(st, at) with the same
parameter, where Aπ (st, at) = Qπ (st, at) − V π (st). Then,
The Q-function can be obtained by these two networks, which
can be expressed as:

Qπ(st, at; θ) = V π(st; θ)−mean
at

Aπ(st, at; θ) . (21)

Details of the training process are given in Algorithm 1.

V. SIMULATION RESULTS
In this section, we take a 4-users (N = 4) scenario as an

example to analyze the timeliness performance of the HARQ-
aided NOMA network. We set the distance from the user to
the BS as d1 = 1.5, d2 = 2, d3 = 2.5, d4 = 3, the path
loss exponent as τ = 2, the message length as N = 160,
the number of symbols as m = 200, and the power level as
M = 20. The training parameters are set as E = 500, Tslot =
103, ϵ = 0.1, η = 0.99, σ = 200, λ = 10−3, k = 4, l = 100.

Fig. 3 compares the Retransmit-At-Will policy with the pol-
icy in [9]. Also, a non-optimal policy is given as a benchmark
where the BS only transmits new packages with a fixed power
allocation scheme. Retransmit-At-Will policy achieves the best
AoI performance at low SNR, while two optimal policies
perform similarly at high SNR. This is because retransmission
is permitted when the BS received an ACK in the Retansmit-
At-Will policy, which can enhance the transmission reliability
at low SNR. However, since transmission is reliable enough
at high SNR, the system will not choose this retransmission
because it will cause stale delivery.

Algorithm 1: Double-Dueling-DQN Algorithm
Input: E, Tslot, ϵ, η, σ, λ, k, l;
Output: The optimal Q-network Q∗(s, a; θ);

1 Initialize the network parameter θ and θ−;
2 Initialize the state of HARQ-aided NOMA system s0;
3 for episode = 1 to E do
4 Reset the system state st = s0;
5 for t = 1 to Tslot do
6 Observe the system state st and calculate the Q

value of all actions Q(st, ·; θ);
7 Select a action at according to the ϵ−greedy

policy (18);
8 Update ϵ = ηϵ;
9 The BS selects action at, and gets the next

state st+1 and the reward rt;
10 Store (st, at, rt, st+1) in the replay buffer D;
11 if size of experiences > σ and t% k = 0 then
12 Sample a mini-batch B from D randomly;
13 Calculate the TD target according to (19);
14 Training the main network with stochastic

gradient descent method, and update θ
with learning rate λ;

15 if t% l = 0 then
16 Update the target network as θ− = θ;

17 return The optimal Q-network Q∗(s, a; θ)

12 14 16 18 20 22
1

1.5

2

2.5

3

3.5

4

4.5
Optimal - Retransmit at Will

Optimal - Retransmit upon Receiving an NACK

Non-optimal policy

Fig. 3. The average AoI under different transmission policy with maximum
retransmissions Tmax = 2.

Fig. 4 illustrates the AoI performance under maximum
retransmissions Tmax = 2 and Tmax = 3. The network
realizes better AoI performance at low SNR when Tmax = 3,
but there is almost no difference under different Tmax at
high SNR. To explain this, we demonstrate the retransmission
policy when Tmax = 3 with the ratio of the retransmission
rounds T . From the ratio, policy T = 3 accounts for a larger
proportion at low SNR, which means the BS prefers to take
more retransmissions to ensure transmission reliability. When
the SNR exceeds 16 dB, the BS prefers fewer retransmissions
to ensure the timeliness of transmission, and the policy struc-
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Fig. 4. The average AoI under different maximum retransmissions Tmax and
the policy structure when Tmax = 3.

ture of Tmax = 3 is more like that of Tmax = 2, so they
perform similarly at high SNR. According to this, we can find
that retransmission can only improve system timeliness at low
SNR. When the SNR exceeds a certain threshold, the system
prefers to always transmit new packages, and retransmission
is meaningless for system timeliness.

To investigate the impact of user pairing on the system AoI,
we set the optimal pairing scheme in [10] as a comparing
benchmark. In this case, u1 is paired with u4, and u2 is paired
with u3. The BS only transmits packages for one user pair at a
time slot, and the other user pair can only wait at this time. Fig.
5 compares the performance of the Retransmit-At-Will policy
with and without user pairing. We can find that transmission
with pairing has a better AoI performance at low SNR, while
transmission without pairing performs better at high SNR. That
is because the user pairing technique reduces the users served
simultaneously, which can reduce the complexity of SIC and
ensure transmission reliability at low SNR. While reliability
can be assured at high SNR, thus transmission without pairing
performs better because it can serve more users simultaneously
and save waiting time. As a result, user pairing can be used
to enhance the timeliness at low SNR.

VI. CONCLUSION
In this paper, we optimize the AoI of the HARQ-aided

NOMA network with multiple users and unrestricted retrans-
missions, which can intelligently decide how to allocate power
resources and when to retransmit. First, a more flexible retrans-
mission scheme with better AoI performance, referred to as
Retransmit-At-Will is proposed. Then, we reformulate the age-
optimal problem as an MDP, and the Double-Dueling-DQN
is adopted to obtain the optimal policy. At last, a threshold
structure of the retransmission policy is demonstrated, and
user pairing is proved to be a technique enhancing the system
freshness at low SNR.
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